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Abstract. The Binary Cascade introduces a novel approach towards intra-nuclear cascade calculations.
Like many QMD codes, it uses a detailed 3-dimensional model of the nucleus, and is based exclusively on
binary scattering between reaction participants and nucleons within this nuclear model. Like a classical
cascade, it uses optical potentials to describe the time evolution of particles passing through the nuclear
medium. In the present paper we introduce the model, and investigate its predictive power for hadron
spectra in nucleon nuclear reactions final states.

PACS. 21.60.Ka Nuclear structure: Monte Carlo models – 24.10.Lx Nuclear reactions: general: Monte
Carlo simulations (including hadron and parton cascades and string breaking models)

1 Introduction

Many intra-nuclear cascade [1] models have been proposed
and developed in the past by several groups. In many cases
the motivation was to provide a satisfactory level of de-
scription of final-state hadron spectra in the problem of
few MeV to few GeV reactions of hadrons with nuclei.

Just like Binary Cascade, they find application
in low-energy calorimetry, studies of nucleon shield-
ing, accelerator-based nuclear-waste degradation, neutrino
beams, or studies of design and application of spallation
neutron sources.

The Binary Cascade introduces a new approach to cas-
cade calculations. It is based on a detailed 3-dimensional
model of the nucleus, and exclusively based on binary scat-
tering between reaction participants and nucleons within
this nuclear model. This feature makes it a hybrid be-
tween a classical cascade code, and a quantum molecular
dynamics model (QMD) [2].

In Binary Cascade, like in QMD, each participating
nucleon is seen as a Gaussian wave package,

φ(x, qi, pi, t) =

2/(Lπ)3/4 exp
(

− 2/L(x− q(t))2 + ipi(t)x
)

, (1)

being propagated in time and space, undergoing collisions
with nucleons in the nuclear medium in the process. Here
x and t are space and time coordinates, and qi and pi
describe the nucleon’s position in configuration and mo-
mentum space.
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The total wave function is assumed to be the direct
product of the wave functions of the participating nucle-
ons and hadrons. Participating means that they are either
primary particles, or have been generated or scattered in
the process of the cascade.

We do not take the Slater determinant into account
in the description. The equations of motion factorize. For
the above waveform, they have the same structure as the
classical Hamilton equations, and can be solved using the
well-known numerical integration methods of the cascade
transport approach.

In Binary Cascade, unlike in QMD where the Hamil-
tonian can be looked at as self-generating from the system
configuration, the Hamiltonian is calculated from simple,
time-independent optical potentials. In addition, only par-
ticipating hadrons are propagated, while nucleons in the
nuclear model that are not participating in binary reac-
tions are simply viewed as a representative nucleon con-
figuration.

The imaginary part of the R-matrix acts like a scatter-
ing term. It is included in the model using discrete, binary
reactions, i.e. 2-body scattering and particle decay. Free
2-body cross-sections are used and a geometrical inter-
pretation of the cross-section is applied. Decay widths for
strong resonances are effective decay widths at the reso-
nances’ stochastic masses.

For each of the above, a more detailed description will
be given in the following sections.

The work was done in the context of the GHAD [3]
frameworks of the GEANT4 [4] simulation toolkit. Soft-
ware implementing the model is publicly available for an
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independent verification of our results. It was released
with GEANT4 in its 6.0 release.

2 Modeling overview

Binary Cascade is an intra-nuclear cascade propagating
primary nucleons and all secondary particles within a nu-
cleus. Interactions take place between a primary or sec-
ondary particle and an individual nucleon of the nucleus.

The nucleus is modeled by explicitly positioning nu-
cleons in space, and assigning momenta to these nucleons.
This is done in a way consistent with the nuclear density
distributions, Pauli’s exclusion principle, and the total nu-
clear mass. Details of the algorithm used are specified in
later sections of this paper.

Free hadron-hadron elastic and reaction cross-section
are used to define collision locations within the nuclear
frame. Where available, experimental cross-sections are
used directly or as a basis for parameterizations used
in the model. Data were taken from the PDG [5] and
CERN/HERA [6] collections.

Propagating particles in the nuclear field is done by
numerically solving the equations of motion, using time-
independent fields derived from optical potentials.

The cascade begins with a projectile and the nuclear
description, and terminates when the average energy of
all participants within the nuclear boundaries are below
a given threshold. The remaining pre-fragment will be
treated by pre-equilibrium decay and de-excitation models
described elsewhere [7].

2.1 The transport algorithm

The initial condition of the transport algorithm is the
primary particle’s type and energy, and a 3-dimensional
model of a nucleus.

For the primary particle an impact parameter is chosen
randomly on a disk outside the nucleus, perpendicular to a
vector passing through the center of the nucleus. The ini-
tial direction of the primary is perpendicular to this disk.

Using straight-line transport, the distance of closest
approach dmin

i to each nucleon i in the target nucleus,
and the corresponding time-of-flight tdi is calculated. The
interaction cross-section σi with target nucleons is calcu-
lated based on the momenta of the nucleons in the nu-
cleus, and the projectile momentum. Target nucleons for
which the distance of closest approach dmin

i is smaller than
dmin
i <

√

σi

π are candidate collision partners for the pri-
mary. All candidate collisions are ordered by increasing
tdi . In case no collision is found, a new impact parame-
ter is chosen. This way transparency effects at the nuclear
boundaries are taken into account.

The primary particle is then transported in the nu-
clear field by the time step given by the time to closest
approach for the earliest collision candidate. Outside the
nucleus, particles travel along straight-line trajectories.
Particles entering the nucleus have their energy corrected

for Coulomb effects. Inside the nucleus particles are prop-
agated in the nuclear field. The equation of motion in the
field is solved for a given time step using a Runge-Kutta
integration method.

At the end of each step, the interaction of the colli-
sion partners is simulated using the scattering term de-
scribed below, resulting in a set of candidate particles for
further transport. The secondaries from a binary collision
are accepted subject to Pauli’s exclusion principle. If the
momentum of any of the particles is below the Fermi mo-
mentum, the interaction is suppressed, and the original
primary continues to the time of its next collision. In case
an interaction is Pauli allowed, the tracking of the primary
ends, and the secondaries are treated like the primary. All
their possible binary collisions with the residual nucleus
are calculated, with the addition of decay in case of strong
resonances. Note that, unlike in QMD, collisions between
participants are not considered, limiting the applicability
of the model to small participant densities.

For resonance decay, the collision time is the time to
the decay of the particle, sampled from the resonance’s
lifetime. Herein the stochastic masses and decay widths
are taken into account. All secondaries are tracked until
they react, decay or leave the nucleus, or until the cascade
stops due to the cut-off condition described above.

2.2 The description of the target nucleus and Fermi
motion

A 3-dimensional model of the nucleus is constructed from
A nucleons and Z protons with coordinates ri and mo-
menta pi, with i = 1, 2, . . . , A.

Nucleon radii ri are selected randomly in the nucleus
rest frame according to the nuclear density ρ(ri). For nu-
clei with A > 16 we use a Woods-Saxon form of the nu-
cleon density [8],

ρ(ri) =
ρ0

1 + exp [(ri −R)/a]
, (2)

where ρ0 is approximated as

ρ0 =
3

4πR3

(

1 +
a2π2

R2

)−1

. (3)

Here a = 0.545 fm, and R = r0A
1/3 fm with the correction

r0 = 1.16(1− 1.16A−2/3) fm.
For light nuclei we use a harmonic-oscillator shell

model for the nuclear density [9],

ρ(ri) =
(

πR2
)−3/2

exp
(

− r2i /R
2
)

, (4)

where R2 = 2
3 〈r2〉 = 0.8133 · A2/3 fm2. To take into ac-

count the repulsive core of the nucleon-nucleon potential
we assume a minimum inter-nucleon distance of 0.8 fm.

The nucleus is assumed to be spherical and isotropic,
i.e. we place each nucleon using a random direction and
the previously determined radius ri.
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The momenta pi of the nucleons are chosen randomly
between 0 and the Fermi momentum pmax

F (ri). The Fermi
momentum, in the local Thomas-Fermi approximation [10]
as a function of the nuclear density ρ, is

pmax
F (r) = h̄c

(

3π2ρ(r)
)1/3

. (5)

The total vector sum of the nucleon momenta has to
be zero, i.e. the nucleus must be constructed at rest. To
achieve this, we choose one nucleon to compensate the
vector sum of the remaining nucleon momenta prest =

−∑i=A−1
i=1 pi. If this sum is larger than the maximum al-

lowable momentum pmax
F (r), we iteratively flip the direc-

tion of the momenta of the nucleons with the largest con-
tribution to the net nucleus momentum, until the residual
sum is an allowed momentum value for a nucleon.

Special cases are introduced for 1H, where the proton
has momentum p = 0, and for the deuteron, where the
momenta of proton and neutron are equal and in opposite
direction.

2.3 Optical and phenomenological potentials

The effect of collective nuclear interaction upon partici-
pants is approximated by a time-invariant scalar optical
potential, based on the properties of the target nucleus.

For protons and neutrons the potential used is deter-
mined by the local Fermi momentum pF(r) as

V (r) =
p2
F(r)

2m
, (6)

where m is the mass of the neutron or the mass of the
proton, respectively.

For pions the potential used is a simple approxima-
tion given by the lowest-order optical potential as derived
in [11]:

V (r) =
−2π(h̄c)2A

mπ

(

1 +
mπ

M

)

b0ρ(r). (7)

Here A is the nuclear mass number, andmπ andM are the
pion and nucleon masses, respectively. mπ is the reduced
pion mass, mπ = (mπmN )/(mπ +mN ), where mN is the
mass of the nucleus. ρ(r) is the nucleon density distribu-
tion. The parameter b0 is the effective s-wave scattering
length. The value used was obtained from the analysis to
pion atomic data and resulted in b0 to be about −0.042 fm.

2.4 Pauli-blocking simulation

The cross-sections and decay width provided by the scat-
tering term used in this model are cross-sections of free
particles. In the nuclear medium, these cross-sections are
modified to effective cross-sections due to Pauli’s exclusion
principle.

For nucleons created in the process of the cascade, we
check that all final-state nucleons occupy a state allowed

Fig. 1. Comparison of the total cross-section in pp scattering
with experimental data from the Particle Data Group [5]. The
dark lines represent the model information, and the small open
circles represent the PDG data. The left plot shows the com-
parison with the total model cross-section, and the right plot
shows the comparison with the sum of all exclusive-channel
cross-sections considered in the final-state generation.

by Fermi statistics. We assume that the nucleus is in its
ground state and all states below Fermi energy are oc-
cupied. Thus we suppress collisions and decays for which
any secondary nucleon has a momentum pi below the local
Fermi momentum, i.e.

pi < pmax
F (r). (8)

2.5 The collision condition

The basis of the description of the reactive part of the scat-
tering amplitude are two-particle binary collisions, also
with associated or direct resonance production, and de-
cay. Based on the cross-section described later, collisions
will occur when the transverse distance dt of any par-
ticipant target pair becomes smaller than the black-disk
radius corresponding to the total cross-section σt

σt

π
> d2

t .

2.6 Total inclusive cross-sections

Experimental data and parameterizations thereof are used
in the calculation of the total, inelastic and elastic cross-
section wherever available.

2.6.1 Hadron-nucleon scattering

For the case of proton-proton (pp) and proton-neutron
(pn) collisions, as well as π+- and π−-nucleon collisions,
experimental data and parameterizations are readily avail-
able as collected by the Particle Data Group (PDG) [5] for
both elastic and inelastic collisions. We use a tabulation
based on a sub-set of these data for

√
s below 3GeV, and

the PDG parameterization at higher energies.
Figure 1 shows a comparison of the Binary Cascade’s

total scattering cross-sections with data from the PDG.
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We also show the corresponding sum of all exclusive chan-
nels’ cross-sections. The comparison of the latter is re-
markable, given the large number of exclusive channels
contributing. It also defines an upper limit of applicability
of the model. Below 10GeV kinetic energy, the resonance
contributions considered are wholly sufficient to describe
the total cross-section.

2.7 Channel cross-sections

Most of the cross-sections of individual channels involv-
ing meson-nucleon scattering can be modeled as resonance
excitation in the s-channel. This kind of interactions ex-
hibits a resonance structure in the energy dependence of
the cross-section, and can be modeled using the Breit-
Wigner function

σres

(√
s
)

=
∑

FS

2J + 1

(2S1 + 1)(2S2 + 1)

× π

k2

ΓISΓFS
(
√
s−MR)2 + Γ 2/4

. (9)

Here S1 and S2 are the spins of the two fusing par-
ticles, J is the spin of the resonance,

√
s the energy in

the center-of-mass system, k the momentum of the fusing
particles in the center-of-mass system, and ΓIS and ΓFS
are the partial width of the resonance for the initial and
final state, respectively. MR is the nominal mass of the
resonance.

The initial states included in the model at present in-
clude all pion-nucleon scattering channels. The product
resonances taken into account are the Delta-resonances
with masses 1232, 1600, 1620, 1700, 1900, 1905, 1910,
1920, 1930, and 1950MeV, and the excited nucleons with
masses of 1440, 1520, 1535, 1650, 1675, 1680, 1700, 1710,
1720, 1900, 1990, 2090, 2190, 2220, and 2250MeV.

2.8 Mass-dependent resonance widths and partial
widths

During the cascading, the resonances produced are as-
signed real, stochastic masses, with values distributed ac-
cording to the production cross-section described above.
The stochastic masses of these resonances may be small
or large compared to the nominal value, and this implies
for example that some channels may not be open for de-
cay, and hence has to be corrected for. In more general
terms it means, that the partial and total decay widths of
a strong resonance will depend on the stochastic mass of
the resonance. We are using the approach introduced in
UrQMD [12] for calculating these widths,

ΓR→12(M) = (1 + r)
ΓR→12(MR)

p(MR)(2l+1)

MR

M

× p(M)(2l+1)

1 + r(p(M)/p(MR))2l
. (10)

Table 1. Values of the parameters of the cross-section for-
mula (11) for the individual reaction channels.

Reaction α β γ

pp→ p∆1232 25 mbarn 0.4GeV 3
pp→ ∆1232∆1232 1.5 mbarn 1GeV 1

pp→ pp∗ 0.55 mbarn 1GeV 1
pp→ p∆∗ 0.4 mbarn 1GeV 1

pp→ ∆1232∆
∗ 0.35 mbarn 1GeV 1

pp→ ∆1232N
∗ 0.55 mbarn 1GeV 1

Here MR is the nominal mass of the resonance, M the
stochastic mass, p is the momentum in the center-of-mass
system of the particles, l the angular momentum of the
final state, and r = 0.2.

2.9 Resonance production cross-section in the
t-channel

In the resonance production in the t-channel, single and
double resonance excitations in nucleon-nucleon collisions
are taken into account. The resonance production cross-
sections are as much as possible based on parameteriza-
tions of experimental data [6] for proton-proton scattering.
The formula used for parameterizing the cross-sections is
motivated from the form of the exclusive production cross-
section of the ∆1232 in proton-proton collisions:

σAB = 2αABβAB

√
s−√s0

(
√
s−√s0)2 + β2

AB

(11)

×
(√

s0 + βAB√
s

)γAB

.

The parameters of the description for the various chan-
nels are given in table 1. For all other channels, the pa-
rameterizations were derived from these by adjusting the
threshold behavior accordingly.

Cross-sections for the reminder of the channels are de-
rived from those described above, by applying detailed
balance. Iso-spin invariance is assumed. The formalism
used to apply detailed balance is

σ(cd→ ab) =
∑

J,M

〈jcmcjdmd ‖ JM〉2
〈jamajbmb ‖ JM〉2

× (2Sa + 1)(2Sb + 1)

(2Sc + 1)(2Sd + 1)
(12)

× 〈p
2
ab〉

〈p2
cd〉

σ(ab→ cd).

Figure 2 illustrates the quality of the channel cross-
sections by showing a comparison between the model and
data for the case of ∆ production. The points are the
∆ + + production cross-sections, scaled with the appro-
priate Clebsh-Gordon coefficient. The line is the Binary
Cascade prediction of this cross-section, summed over all
contributing exclusive channels. We find good agreement.
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Fig. 2. Comparison of delta production cross-sections in pp
scattering with experimental data from the CERN-HERA col-
lections [6]. The points are the∆++ production cross-sections,
scaled with the appropriate Clebsh-Gordon coefficient. The line
is the Binary Cascade prediction of this cross-section, summed
over all contributing exclusive channels.

2.10 Nucleon-nucleon elastic final states

Angular distributions for elastic scattering of nucleons are
taken as closely as possible from experimental data, i.e.

from the result of a phase shift analysis. They are derived
from differential cross-sections obtained from the SAID
database, R. Arndt et al. [13].

Final states are obtained by sampling from tables of
the cumulative distribution function (CDF) of the center-
of-mass scattering angle, tabulated for a discrete set of
lab kinetic energies. The CDFs are tabulated at 1 degree
intervals and sampling is done using bi-linear interpola-
tion in energy and CDF values. Coulomb and Coulomb
interference effects are in this way taken into considera-
tion automatically for the case of proton-proton scatter-
ing. Figure 3 compares the algorithm with experimental
data from the SAID database.

2.11 Generation of transverse momentum

Angular distributions for final states other than nucleon-
nucleon elastic scattering are calculated analytically, de-
rived from the collision term of the in-medium relativis-
tic Boltzmann-Uehling-Uhlenbeck equation [14] via scal-
ing of the center-of-mass energy. This is done in analogy to
UrQMD, based on the nucleon-nucleon elastic scattering

Fig. 3. Comparison of differential cross-section in pp elas-
tic scattering with experimental data from the SAID data
base [13]. The top plot shows the cross-section at 147MeV
energy, the middle plot shows the cross-sections at 597MeV,
and the lower plot shows the cross-sections at 1340MeV. Open
circles are data, full points are results of the model.

cross-sections:

σNN→NN(s, t) =
1

(2π)2s
(D(s, t) + E(s, t)

(13)
+ (inverted t, u)).

Here s, t, u are the Mandelstam variables, D(s, t) is
the direct term, and E(s, t) is the exchange term, with

D(s, t) =
(gσNN)

4(t− 4m2)2

2(t−m2
σ)

2

+
(gωNN)

4(2s2 + 2st+ t2 − 8m2s+ 8m4)

(t−m2
ω)

2

(14)
+

24(gπNN)
4m4t2

(t−m2
π)

2

− 4(gσNNg
ω
NN)

2(2s+ t− 4m2)m2

(t−m2
σ)(t−m2

ω)
,
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and

E(s, t) =
(gσNN)

4(t(t+ s) + 4m2(s− t))

8(t−m2
σ)(u−m2

σ)

+
(gωNN)

4(s− 2m2)(s− 6m2)

2(t−m2
ω)(u−m2

ω)

− 6(gπNN)
4(4m2 − s− t)m4t

(t−m2
π)(u−m2

π)

+
3(gσNNg

π
NN)

2m2(4m2 − s− t)(4m2 − t)

(t−m2
σ)(u−m2

π)

+
3(gσNNg

π
NN)

2t(t+ s)m2

2(t−m2
π)(u−m2

σ)
(15)

+
(gσNNg

ω
NN)

2(t2 − 4m2s− 10m2t+ 24m4)

4(t−m2
σ)(u−m2

ω)

+
(gσNNg

ω
NN)

2((t+ s)2 − 2m2s+ 2m2t)

4(t−m2
ω)(u−m2

σ)

+
3(gωNNg

π
NN)

2m2(t+ s− 4m2)(t+ s− 2m2)

(t−m2
ω)(u−m2

π)

+
3(gωNNg

π
NN)

2m2(t2 − 2m2t)

(t−m2
π)(u−m2

ω)
.

In praxi, the in-medium mass, m, was set to the free nu-
cleon mass value, and the nucleon-nucleon coupling con-
stants used were 1.434 for the π, 7.54 for the ω, and 6.9
for the σ.

Finite-size effects were included at the meson-nucleon
vertex, using a phenomenological form factor.

2.12 Resonance decay

In the decay of strong resonances, we use the decay
branching ratios from PDG. All decay channels with nom-
inal branching ratios larger than 1% are simulated.

The stochastic mass of an individual resonance created
is sampled on creation from the Breit-Wigner form, under
the mass constraints posed by the center-of-mass energy of
the scattering, and the mass in the lightest-decay channel.
The decay widths and partial widths are then adjusted
according to eq. (10) to take the stochastic mass value
into account.

2.13 The escaping particle and coherent effects

When a particle crosses the nuclear boundary, the ground
state of the residual changes. This is a coherent effect that
needs to be taken into account to describe the high-energy
limit of particle production correctly. The energy of the
outgoing particle could otherwise be such that the to-
tal energy available for the residual nucleus is below its
ground-state mass. We hence adjust the energy of parti-
cles crossing the nuclear boundaries by the mass difference
of old and new nucleus.

Fig. 4. Double differential cross-section for neutrons produced
in proton scattering at 7.5 degrees by 256MeV protons. His-
tograms: Binary Cascade predictions, points: data [15].

2.14 Transition to pre-compound modeling

Eventually, the cascade assumptions will break down at
low energies, and the state of affairs has to be treated
by other means such as evaporation and pre-equilibrium
decay. This transition is not studied in depth at present,
and interesting approaches of using the tracking time, as
done in the Liege cascade code [16], can be applied.

For the purpose of this work, a simple algorithm suf-
fices to determine when cascading is stopped: As long as
the kinetic energy of the participants is above a certain
threshold (70MeV), the cascading continues.

The residual participants and the nucleus in its cur-
rent state are then used to define the initial state for pre-
equilibrium decay.

2.15 Calculation of excitation energies and residuals

At the end of the cascade, we form a pre-fragment for fur-
ther treatment in pre-compound and nuclear de-excitation
models.

These models need information about the nuclear frag-
ment created by the cascade. The fragment is character-
ized by the number of nucleons in the fragment, the charge
of the fragment, the number of holes, the number of all
excitons, the number of charged excitons, and the four-
momentum of the fragment.

The number of holes is given by the difference of the
number of nucleons in the original nucleus and the number
of residual nucleons in the pre-fragment. Nucleons cap-
tured in the pre-fragment at the end of the cascade are
considered as excitons.

The momentum of the fragment, calculated by the dif-
ference between the momentum of the primary and the
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Fig. 5. Double differential cross-section for neutrons produced in proton scattering off aluminum. Histograms: Binary Cascade
predictions, points: data [17,15,18,19].

outgoing secondary particles, is split into two components.
The first is the momentum acquired by coherent elastic ef-
fects, and the second is the momentum of the excitons in
the nucleus’ rest frame. Only the latter part is passed to
the de-excitation models.

3 Comparison with experiment

A verification suite [20] has been developed to evalu-
ate and optimize hadronic models in the cascade energy
range in GEANT4. The verification is done by compar-
ing simulation results with experimental data from thin
target measurements, mainly as collected in the EXFOR
database [21]. At the time of writing, only data from mea-

surements of absolute differential cross sections are uti-
lized in the suite.

The modular structure of GEANT4 allows the genera-
tion of single events with a known incident particle energy
and any explicitly defined hadronic final-state generator.
The kinematics of secondaries produced in the interac-
tion are then analyzed and the resulting angular, momen-
tum, energy, and baryon number spectra are stored in
histograms. The energy-momentum balance can be con-
trolled as well. The histograms are compared to published
measurements of the differential and double differential
cross-sections, dσ/dE, dσ/dΩ, d2σ/dE dΩ, and the in-
variant cross-sections, E d3σ/d3p.

Some results produced with the Binary Cascade for
the GEANT4 release 6.0 are presented in the following,
focusing on neutron and pion production.
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Fig. 6. Double differential cross-section for neutrons produced in proton scattering off iron. Histograms: Binary Cascade
predictions, points: data [17,15,18,19].

Table 2. Cases contained in the verification for neutron pro-
duction by incident protons on various target nuclei.

Nucleus Beam energy (MeV)
Be 113, 256, 585, 800
C 113, 256, 590
Al 22, 39, 90, 113, 160, 256, 585, 800
Fe 22, 65, 113, 256, 597, 800
Ni 585
Zr 22, 35, 50, 90, 120, 160, 256, 800
Pb 35, 65, 113, 120, 160, 256, 597, 800

3.1 Neutron production

Verifications have been performed for neutrons produced
by protons incident upon various targets for proton en-

ergies below 1GeV. In this energy region the inclusive
reaction channel

p +A −→ n +X, (16)

has been studied experimentally for many years, and a rich
body of experimental data is available. The secondary neu-
trons can be identified and their energies can be measured
with good precision using time-of-light techniques. A sig-
nificant number of test cases have been created (table 2).
We show comparisons for a few representative situations.

In particular the high-energy part of the double dif-
ferential inclusive neutron spectra is very sensitive to the
physics model used in the cascade code.

Figure 4 shows double differential cross-sections for
proton-induced neutron production at forward angles
for several materials. We are using linear scale to put
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Fig. 7. Double differential cross-section for neutrons produced in proton scattering off lead. Histograms: Binary Cascade
predictions, points: data [17,15,18,19].

emphasis onto the cascade energy regime, where mostly
the proton creates an energetic neutron at small angles
in a charge exchange reaction. The figure shows that the
quality of the description of the forward peak is very good
for a wide range of materials. Also the plateau at inter-
mediate energies is well described.

Figures 5, 6, and 7 show comparisons of neutron double
differential cross-sections at several angles, and for several
incident proton energies in three materials, Al, Fe, and
Pb, respectively.

We find an excellent agreement between data and
model for all energies and materials, with the exception of
high-energy neutrons at large neutron scattering angles in
heavy materials. Given the conceptual absence of S-wave
pion re-absorption on quasi-deuterons in the model, the
agreement is expected to be reduced in quality at large

angles for incident proton energies above the pion pro-
duction threshold, in particular for large nuclei. There we
expect the model prediction to be lower than the experi-
mental data.

3.2 Pion production

In the before-mentioned GEANT4 verification suite, a siz-
able set of comparisons of pion productions is available
(table 3) for the reactions

p +A −→ π± +X. (17)

Due to the before mentioned conceptual absence of
S-wave pion re-absorption on quasi-deuterons in the
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Fig. 8. Double differential cross-section for pions produced at 45◦ in 597MeV proton scattering off various materials. Histograms:
Binary Cascade predictions, points: data [22].

Table 3. Cases contained in the verification for pion produc-
tion by incident protons on various target nuclei.

Target nucleus Beam energy (MeV)
H 585
D 585
Be 585
C 590
Al 585, 730, 1000
Cu 730
Ni 200, 585
Pb 585, 730

model, we give just one comparison in fig. 8. It shows the
double differential cross-sections for the production of π+

and π− on various materials at 585MeV proton incident
energy for a selected angle. Data were taken from [22].

The overall agreement between prediction and exper-
iment is found to be reasonable. The experimental cross-
sections show that π+ production by protons is signifi-
cantly larger than π− production. This feature is well-
reproduced by Binary Cascade. The dependence of the
cross-section on the pion energy is also well reproduced,
although the overall normalization is underestimated for
positive pions by a factor of about 1.5–3 for carbon and
aluminum. It is interesting to see how for heavier elements
an excess of low-energy pions is showing in the model re-
sult. The effect is stronger for negative pions than for pos-
itive pions, and we tend to associate it to the absence of
the re-absorption channel mentioned above.
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4 Conclusions

The Binary Cascade intra-nuclear transport model was de-
scribed. It mixes the approaches of QMD and generalized
cascades, and comes with a large, resonance-based colli-
sion term. The range of its applicability in nucleon nuclear
reactions stretches from < 100MeV to about 10GeV, al-
lowing for a consistent calculation of the secondary hadron
spectra in the low and intermediate energy domains. Ex-
tensions of this term to cover pion-induced reactions and
strangeness are in discussion.

Comparisons to experimental data for neutron and
pion production in proton nuclear reactions have been
presented. The predictive power of the approach is quite
convincing, in particular in the high-energy part of the
spectra, where cascade codes otherwise often experience
limitations in the quality of description.

The Binary Cascade model implementation in
GEANT4 has no fixed structure. It was designed to serve
as a proving ground of new concepts and theoretical ideas
in the intermediate-energy domain.

The authors wish to thank Dr D.H. Wright and Dr T. Koi
of SLAC for their contributions to the GEANT4 verification
suite for the cascade energy range, and Dr Henning Weber of
Frankfurt University for many useful discussions concerning
UrQMD. The assistance of Prof. G. Greeniaus of the Univer-
sity of Alberta and TRIUMF in accessing and using the SAID
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